Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Turkish Journal of Electrical Engineering and Computer Sciences ; 31(2):323-341, 2023.
Article in English | Scopus | ID: covidwho-2301657

ABSTRACT

The world has now looked towards installing more renewable energy sources type distributed generation (DG), such as solar photovoltaic DG (SPVDG), because of its advantages to the environment and the quality of power supply it produces. However, these sources' optimal placement and size are determined before their accommodation in the power distribution system (PDS). This is to avoid an increase in power loss and deviations in the voltage profile. Furthermore, in this article, solar PV is integrated with battery energy storage systems (BESS) to compensate for the shortcomings of SPVDG as well as the reduction in peak demand. This paper presented a novel coronavirus herd immunity optimizer algorithm for the optimal accommodation of SPVDG with BESS in the PDS. The proposed algorithm is centered on the herd immunity approach to combat the COVID-19 virus. The problem formulation is focused on the optimal accommodation of SPVDG and BESS to reduce the power loss and enhance the voltage profile of the PDS. Moreover, voltage limits, maximum current limits, and BESS charge-discharge constraints are validated during the optimization. Moreover, the hourly variation of SPVDG generation and load profile with seasonal impact is examined in this study. IEEE 33 and 69 bus PDSs are tested for the development of the presented work. The suggested algorithm showed its effectiveness and accuracy compared to different optimization techniques. © 2023 TÜBÍTAK.

2.
23rd International Middle East Power Systems Conference, MEPCON 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2252489

ABSTRACT

Distribued Generations (DG) have economic, financial, and environmental benefits. DG reduces power losses in the distribution system but has a negative impact on the protection devices. In this article, the IEEE 33 bus system will be used and tested by adding up to three DG units using MATLAB/SIMULINK software. the optimization techniques that will be used are Grey Wolf Optimizer, Whale Optimization Algorithm, Genetic Algorithm, and Coronavirus Herd Immunity or COVID-19 optimization techniques to select the optimal site and size of the DG units based on the lowest pay-back period considering the voltage limits and power losses. The paper proposes a modified mutation operator for COVID-19 based on Gaussian and Cauchy mutations to have better performance and lower variance. The proposed algorithm is compared with the other optimization techniques. The proposed algorithm achieved better results, which proved to have competitive performance with state-of-the-art evolutionary algorithms. © 2022 IEEE.

3.
International Transactions on Electrical Energy Systems ; 2023, 2023.
Article in English | Scopus | ID: covidwho-2252065

ABSTRACT

An unbalanced electrical distribution system (DS) with radial construction and passive nature suffers from significant power loss. The unstable load demand and poor voltage profile resulted from insufficient reactive power in the DS. This research implements a unique Rao algorithm without metaphors for the optimal allocation of multiple distributed generation (DG) and distribution static compensators (DSTATCOM). For the appropriate sizing and placement of the device, the active power loss, reactive power loss, minimum value of voltage, and voltage stability index are evaluated as a multiobjective optimization to assess the device's impact on the 25-bus unbalanced radial distribution system. Various load models, including residential, commercial, industrial, battery charging, and other dispersed loads, were integrated to develop a mixed load model for examining electrical distribution systems. The impact of unpredictable loading conditions resulting from the COVID-19 pandemic lockdown on DS is examined. The investigation studied the role of DG and DSTATCOM (DGDST) penetration in the electrical distribution system for variations in different load types and demand oscillations under the critical emergency conditions of COVID-19. The simulation results produced for the mixed load model during the COVID-19 scenario demonstrate the proposed method's efficacy with distinct cases of DG and DSTATCOM allocation by lowering power loss with an enhanced voltage profile to create a robust and flexible distribution network. Copyright © 2023 Jitendra Singh Bhadoriya et al.

4.
1st International Conference on Intelligent Controller and Computing for Smart Power, ICICCSP 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2051998

ABSTRACT

In an era of depleting fossil fuels and a contaminated environment, legislators, governments, industries, academics, and other energy organizations have focused their attention on renewable energy distributed generation (REDG). REDGs' appropriate size and location should be determined optimally. Since, the operating characteristics of the distribution system (DS) such as losses, voltage profile depends upon placement and sizing of DG in DS. Optimal accommodation includes placement and sizing of PV-DG is implemented using a novel Coronavirus herd immunity optimizer in the present work. This model is aiming to minimize total power loss and improve the voltage profile of the whole DS. Further, the constraints used for this study are voltage limits and current limits. Also, the seasonal load and PV generation variation for a typical year is included during the optimization. The results and performance of the proposed technique have been compared with well-known methods in the literature. The results obtained show the efficacy of the suggested method. © 2022 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL